Abstract
During the last years, the new science of cities has been established as a fertile quantitative approach to systematically understand the urban phenomena. One of its main pillars is the proposition that urban systems display universal scaling behavior regarding socioeconomic, infrastructural and individual basic services variables. This paper discusses the extension of the universality proposition by testing it against a broad range of urban metrics in a developing country urban system. We present an exploration of the scaling exponents for over 60 variables for the Brazilian urban system. Estimating those exponents is challenging from the technical point of view because the Brazilian municipalities’ definition follows local political criteria and does not regard characteristics of the landscape, density, and basic utilities. As Brazilian municipalities can deviate significantly from urban settlements, urban-like municipalities were selected based on a systematic density cut-off procedure and the scaling exponents were estimated for this new subset of municipalities. To validate our findings we compared the results for overlaying variables with other studies based on alternative methods. It was found that the analyzed socioeconomic variables follow a superlinear scaling relationship with the population size, and most of the infrastructure and individual basic services variables follow expected sublinear and linear scaling, respectively. However, some infrastructural and individual basic services variables deviated from their expected regimes, challenging the universality hypothesis of urban scaling. We propose that these deviations are a product of top-down decisions/policies. Our analysis spreads over a time-range of 10 years, what is not enough to draw conclusive observations, nevertheless we found hints that the scaling exponent of these variables are
evolving towards the expected scaling regime, indicating that the deviations might be temporally constrained and that the urban systems might eventually reach the expected scaling regime.
References
Alves L., Ribeiro A., Lenzi E., Mendes R. (2013). Distance to the scaling law: a useful approach for unveiling relationships between crime and urban metrics. Plos one, v. 8, n. 8, p. e69580. https://doi.org/10.1371/journal.pone.0069580
Alves L., Ribeiro H., Lenzia E., Mendes R. (2014). Empirical analysis on the connection between power-law distributions and allometries for urban indicators. Physica A: Statistical Mechanics and its Applications, v.409, p. 175–182. https://doi.org/10.1016/j.physa.2014.04.046.
Arcaute E., Hatna E., Ferguson P., Youn H., Johansson A., Batty M. (2015). Constructing cities, deconstructing scaling laws. Journal of The Royal Society Interface, v. 12, n. 102, p. 20140745. https://doi.org/10.1098/rsif.2014.0745.
Batty M. (2013). The new science of cities. MIT Press.
Bettencourt L.M. (2013). The origins of scaling in cities. Science, v. 340, n. 6139, p. 1438–1441. https://doi.org/10.1126/science.1235823.
Bettencourt L.M., Lobo J., Youn H. (2013). The hypothesis of urban scaling: formalization, implications, and challenges. arXiv preprint arXiv:1301.5919.
Bettencourt L.M., Lobo J., Helbing D., Kuhnert C., West G. (2007). Growth, innovation, scaling, and the pace of life in cities. Proceedings of the national academy of sciences, v. 104, n. 17, p. 7301–7306. https://doi.org/10.1073/pnas.0610172104.
Bettencourt L.M., Lobo J. (2016). Urban scaling in Europe. Journal of The Royal Society Interface, v. 13, n. 116, p. 20160005. https://doi.org/10.1098/rsif.2016.0005.
Bettencourt L.M., West G. (2010). A unified theory of urban living. Nature, v. 467, n. 7318, p. 912–913. https://doi.org/10.1038/467912a.
Cesaretti R., Lobo J., Bettencourt L.M., Ortman S., Smith M. (2016). Population-area relationship for Medieval European cities. PloS one, v. 11, n. 10, p. e016267. https://doi.org/10.1371/journal.pone.0162678
Cottineau C., Arcaute E., Hatna E., Batty M. (2017). Diverse cities or the systematic paradox of urban scaling laws. Computers, Environment and Urban Systems, v. 63, p. 80–94. https://doi.org/10.1016/j.compenvurbsys.2016.04.006.
Cura R., Cottineau C., Swerts E., Ignazzi C., Bretagnolle A., Vacchiani-Marcuzzo C., Pumain D. (2017). The Old and the New: Qualifying City Systems in the World with Classical Models and New Data. Geographical Analysis, v. 49, n. 4, p. 363–386. https://doi.org/10.1111/gean.12129.
Dijkstra L., Poelman H. (2012). Cities in Europe: the new OECD-EC definition. Regional Focus, v. 1, p. 2012.
Faria R., Nogueira J., Mueller B. (2005). Políticas de precificação do setor de saneamento urbano no Brasil: as evidências do Equilíbrio de Baixo Nível. Estudos Econômicos, v. 35, n. 3, p. 481–518.
Fragkias M., Lobo J., Strumsky D., Seto K. (2013). Does size matter? Scaling of CO2 emissions and US urban areas. PLoS One, v. 8, n. 6, p. e64727. https://doi.org/10.1371/journal.pone.0064727
Gomez-Lievano A., Youn H., West G. (2012). The statistics of urban scaling and their connection to Zipf’s law. PloS one, v. 7, n. 7, p. e40393. https://doi.org/10.1371/journal.pone.0040393
Gomez-Lievano A., Patterson-Lomba O., Hausmann R. (2016). Explaining the prevalence, scaling and variance of urban phenomena. Nature Human Behaviour, v. 1, p. 0012. https://doi.org/10.1038/s41562-016-0012.
Habitat U.N. (2016). World Cities Report 2016: Urbanization and Development–Emerging Futures. Nairobi, Publisher: UN-Habitat.
IBGE. (2010). Censo demográfico 2010. IBGE: Instituto Brasileiro de Geografia e Estatística. Disponível em: https://bit.ly/3jrHGOe. [Consultado em: Dezembro/2014].
IBGE-cidades. IBGE-cidades. Disponível em: https://bit.ly/2E0LUMr. [Consultado em: Março/2016].
Ignazzi A.C. (2014). Scaling laws, economic growth, education and crime: evidence from Brazil. L’Espace géographique, v. 43, n. 4, p. 324–337.
Ignazzi, A. C. (2015). PhD thesis: Coevolution in the Brazilian System of Cities. Université Paris 1. Disponível em: [https://www.dropbox.com/s/y1ds31yegjb9pta/Th%C3%A9se%20Doctorat%20G%C3%A9ographie%20Ignazzi_Paris1.pdf?dl=0].
IPEA. Instituto de Pesquisa Econômica Aplicada. Dados econômicos brasileiros. Disponível em: https://bit.ly/2OPz0Do. [Consultado em: Novembro/2013].
Leitao J., Miotto J., Gerlach M., Altmann E. (2016). Is this scaling nonlinear?. Royal Society Open Science, v. 3, n. 7, p. 150649. https://doi.org/10.1098/rsos.150649.
Louf R., Roth C., Barthelemy M. (2014). Scaling in transportation networks. PLoS One, v. 9, n. 7, p. e102007. https://doi.org/10.1371/journal.pone.0102007
Louf R., Barthelemy M. (2014). Scaling: lost in the smog. Environment and Planning B: Planning and Design, v. 41, n. 5, p. 767–769. https://doi.org/10.1068/b4105c.
Martine G., Mcgranahan G. (2010). Brazil’s Early Urban Transition: What Can It Teach Urbanizing Countries?. IIED.
MMA – Ministério do Meio Ambiente. Cadastro Nacional de Unidades de Conservação. Disponível em: https://bit.ly/3eSplGL. [Consultado em: Novembro/2016].
Muller N., Jha A. (2017). Does environmental policy affect scaling laws between population and pollution? Evidence from American metropolitan areas. PloS one, v. 12, n. 8, p. e0181407. https://doi.org/10.1371/journal.pone.0181407
Nelson R. (1956). A theory of the low-level equilibrium trap in underdeveloped economies. The American Economic Review, v. 46, n. 5, p. 894–908.
OSM - Open Street Maps. Dados do Brasil. Disponível em: https://bit.ly/32Kol52. [Consultado em: Agosto/2013].
Ortman S., Cabaniss A., Strum J., Bettencourt L.M. (2014). The pre-history of urban scaling. PloS one, v. 9, n. 2, p. e87902. https://doi.org/10.1371/journal.pone.0087902.
Pumain D., Paulus F., Vacchiani-Marcuzzo C., Lobo J. (2006). An evolutionary theory for interpreting urban scaling laws. Cybergeo: European Journal of Geography. https://doi.org/10.4000/cybergeo.2519.
Ribeiro F., Meirelles J., Ferreira F., Neto C. (2017). A model of urban scaling laws based on distance dependent interactions. Royal Society Open Science, v. 4, n. 3, p. 160926. https://doi.org/10.1098/rsos.160926.
Rybski D., Reusser D., Winz A., Fichtner C., Sterzel T., Kropp J. (2017). Cities as nuclei of sustainability?. Environment and Planning B: Urban Analytics and City Science, v. 44, n. 3, p. 425–440.
SNIS - Sistema Nacional de Informações sobre Saneamento. (2014). Diagnóstico dos Serviços de Água e Esgotos - 2012. Brasília.
SNIS - Sistema Nacional de Informações sobre Saneamento. Série Histórica. Disponível em: https://bit.ly/3eYgvr2. [Consultado em: Março/2017].
Strano E., Sood V. (2016). Rich and poor cities in Europe. An urban scaling approach to mapping the European economic transition. PloS one, v. 11, n. 8, p. e0159465. https://doi.org/10.1371/journal.pone.0159465
West G. (2017). Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies. Penguin.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2020 João Meirelles, Camilo Rodrigues Neto, Fabiano Lemes Ribeiro, Fernando Fagundes Ferreira, Claudia Rebeca Binder; Julio Celso Borello Vargas