The progressive gallery paradox:
PDF (Português (Brasil))

How to Cite

ROLIM, A. L.; AMORIM, L. . The progressive gallery paradox: : neuroscience and morphology applied to behavior analysis in an art gallery typology. Revista de Morfologia Urbana, [S. l.], v. 10, n. 2, 2022. DOI: 10.47235/rmu.v10i2.264. Disponível em: https://revistademorfologiaurbana.org/index.php/rmu/article/view/264. Acesso em: 22 nov. 2024.

Abstract

Focusing on visitors’ spatial behavior we investigate an exhibition space typology with sequential arrangement of rooms, called “progressive gallery” (GP). Resulting from a doctoral thesis, the interface between neuroscience and spatial syntax is proposed. The impact of GPs on the attentional function is evaluated by measuring the focus response in visitors navigating virtual galleries. Initial hypotheses about GPs were: visual fields are highly intelligible; deterministic layouts lead to more focused visitation and the space has great impact on the visit, especially when routes are limited. Simple hypothetical matrices of layouts, historical examples and two modern GPs, the Solomon R. Guggenheim Museum, and the Museum of Unlimited Growth, were analyzed. Subsequently, the analysis of complex variations occurs followed by the evaluation of visitor paths and focus during virtual navigation in the galleries, our main concern. The “Degree of Progression” and the “Index of Variation of Focus Peaks” are introduced, establishing a close relationship between spatial geometry and neural responses, which can provide valuable data for curatorial and architectural projects. Results revealed that the coexistence of intelligibility, good intervisibility and route-defining geometry, unlike the hypothesis, did not lead to more focused responses, pointing towards the paradox in question.

https://doi.org/10.47235/rmu.v10i2.264
PDF (Português (Brasil))

References

Albright, T. D. (2015) “Neuroscience for architecture”, em ROBINSON, S. e PALLASMAA, J. (eds.) Mind in Architecture: neuroscience, embodiment, and the future of design. (The MIT Press, Cambridge, Massachussetts) 197-217.

Ashwal, S. (2018) “Disorders of Consciousness in Children”, em SWAIMAN, K. et al. (eds.) Pediatric Neurology (Elsevier, Amsterdam) 767-780.

AUTODESK, Inc. (NASDAQ: ADSK) (2017) “Revit: software built for Building Information Modeling (BIM)”. Versão educacional 2017. [S. l.] [2017?]. Disponível em: https://www.autodesk.com/education/free-software/revit. (Acesso em: 10 Fevereiro 2020).

Amorim, L. (1999) The Sector’s Paradigm: a study of the spatial and functional nature of modernist housing in Northeast Brazil. Ph.D. Thesis. University College London. Disponível em: https://discovery.ucl.ac.uk/id/eprint/1318054 (Acesso: 21 Outubro 2022).

Benedikt, M. L. (1979) “To take hold of space: isovist and isovist fields”, Environment Planning B: Planning and Design 6, 47-65.

Bennett, T. (1995) The birth of the museum: history, theory, politics (Routledge, New York).

Choi, Y. K. (1997) “The morphology of exploration and encounter in museum layouts”, Proceedings of the Space Syntax First International Symposium (UCL, London) 1, 16.1 -16.10.

Conroy, R. (2001) Spatial Navigation in immersive virtual environments. Ph.D Thesis. University College London. Disponível em: https://discovery.ucl.ac.uk/id/eprint/1111 (Acesso: 21 Outubro 2022).

Conroy-Dalton, R. et al. (2015) “Navigating complex buildings: cognition, neuroscience and architectural design”, em GERO, John S. (ed.) Studying Visual and Spatial Reasoning for Design Creativity. (Springer, Netherlands) 7-12.

EMOTIV (2015) “Emotiv BCI: software for brain computer interface.” Versão 2019 [S. l.] [2015?]. Disponível em: https://www.emotiv.com/product/emotiv-bci/. (Acesso em: 10 Fevereiro 2020).

EPIC GAMES, Inc. (2019) “Unreal Engine: real-time 3D creation platform”. Versão 2019 [S. l.] [2019?]. Disponível em: https://www.unrealengine.com/en-US/get-now. (Acesso em: 10 Fevereiro 2020).

Gazzaniga, M., Ivry, R. e Mangun, G. (2014) Cognitive NeuroScience: the biology of the mind (Norton & Company: New York).

Hillier, B. (2003) “The architectures of seeing and going: or, are cities shaped by bodies or minds? and is there a syntax of spatial cognition?”, Proceedings of the Fourth International Space Syntax Symposium (UCL, London) 06.1-06.34.

Hillier, B. et al. (1976) “Space syntax”, Environment Planning B: Planning and Design 3, 147-18.

Hillier, B. e Hanson, J. The social logic of space (Cambridge University Press: Cambridge)

Hillier, B. e Tzortzi, K. (2011) “Space Syntax: The Language of Museum Space”, em MACDONALD, S. (ed.) A Companion to Museum Studies (Wiley-Blackwell, Oxford) 282-301.

Li, W., Mai, X. e Liu, C. (2014) “The default mode network and social understanding of others: what do brain connectivity studies tell us”. Frontiers in Human Neuroscience 8(74), 1-15.

Mallgrave, H. (2013) Architecture and Embodiment: The Implications of the New Sciences and Humanities for Design (Routledge, New York).

Melton, A. (1935) Problems of installation in museums of art (Publications of the American Association of Museums: Washington D.C).

Menon, V. et al. (2015) “Salience Network”, em TOGA, A. (ed.) Brain Mapping: an Encyclopedic Reference (Elsevier) 2, 97-611. Disponível em: https://med.stanford.edu/content/dam/sm/scsnl/documents/Menon_Salience_Network_15.pdf. (Acesso 14 Setembro 2019)

Peponis, J. e Hedin, J. (1982) “The layout of theories in the Natural History Museum”, 9H 3, 21-25.

Peponis, J. (1993) “Evaluation and Formulation in Design – the implications of morphological theories of function”, Nordisk Arkitekturforskinning - Nordic Journal of Architectural Research 2, 53-62.

Peponis, J. et al. (2003) “Path, theme and narrative in open plan exhibition settings”, Proceedings of the Fourth International Space Syntax Symposium (UCL, London) 29.1-29.20.

Psarra, S. e Grajewski, T. (2000) “Architecture, narrative and promenade in Benson and Forsyth’s Museum of Scotland”, Architecture Research Quaterly, 4(2), 122-36.

Psarra, S. (2005) “Spatial culture, wayfinding and the educational message: the impact of layout on the spatial, social and educational experiences of visitors to museums and galleries” em MACLEOD, S. (ed.) Reshaping Museum Space: Architecture, Design, Exhibitions (Routledge: London) 78-94.

Psarra, S. (2016) The Venice variations: Tracing the architectural imagination. (UCL Press, London).

Radek, P. (2011) “The Frontoparietal Attention Network of the Human Brain”, The Neuroscientist 18(5), 502-515.

Rolim, A. L., Amorim, L. e Queiroz, M.C. (2017) “From Wright to Gwathmey Siegel: The case of movement in the Guggenheim Museum”, Proceedings of the 11th International Space Syntax Symposium (Instituto Superior Técnico, Lisboa) 19.1 -19.15.

Rolim, A. L., Amorim, L. e Flavigna, L. (2019) “From Progressive to Labyrinthine: Testing formal variations of an exhibition space typology”, Proceedings of the 12th International Space Syntax Symposium (Jiaotong University: Beijing) 291.1 -291.14.

Rolim, A. L., Amorim, L. e Jaborandy, M. L. (2022) “The galleria progressiva in the Solomon R. Guggenheim Museum and the Museum of Unlimited Growth”, em RUIVO, C. et.al (ed.) Formal Methods in Architecture and Urbanism (Cambridge Scholars Publishing: Newcastle upon Tyne) 2, 201-222.

Spreng. R. Nathan et al (2013) “Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain”, Journal of Cognitive Neuroscience 25(1), 74-86.

Stavroulaki, G. e Peponis. J. (2003) “The spatial construction of seeing at Castelvecchio”, Proceedings of the Fourth International Space Syntax Symposium (UCL, London) 66.1-66.14.

Sutton, T. (2000) The classification of visual art (Cambridge University Press: Cambridge).

Tröndle, M. (2014) “Space, movement and attention: affordances of the museum environment”, International Journal of Arts Management 17(1), 4-17.

Turner, A. (2003) “Analysing visual morphology of spatial morphology”. Environment and Planning B: Planning and Design 30(5), 657-676.

Turner, A e Penn, A. (2002) “Encoding natural movement as an agent-based system: an investigation into human pedestrian behaviour in the built environment”, Environment and Planning B: Planning and Design 29 (4), 473-490.

Turner, A. (ed.) (2007a) New Developments in Space Syntax Software (ITU Faculty of Architecture: Istanbul).

Turner, A. (2007b), “To move through space: lines of vision and movement” Proceedings of the 6th International Space Syntax Symposium (ITU Faculty of Architecture, Istanbul) 37.01-37.12.

Tzortzi, K. (2015) Museum space: where architecture meets museology (Routledge: London).

Vail, K. (Ed) (2009) The Museum of Non-Objective Painting: Hilla Rebay and the Origins of the Solomon R. Guggenheim Museum (Guggenheim Museum Publications: New York).

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Ana Luisa Rolim, Luiz Amorim

Downloads

Download data is not yet available.